
with nanometer pore structure possess much better mechan-

ical and insulation properties than those of conventional car-

bon foams with micrometer pore structure.
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Table 1 – Bulk density, average pore size and properties of the carbon foams and a comparison with carbon foams reported in
literature.

Carbon foams Resin concentration
(g/mL)

Bulk density
(g/cm3)

Average pore
size (nm)

Compressive
strength (MPa)

Thermal conductivity
(W/mK)

CPF1 0.13 0.24 180 13.1 0.06
CPF2 0.22 0.37 120 21.8 0.09
CPF3 0.36 0.73 20 98.3 0.24
Mercuri et al. [8] 0.27 25,000–57,000 12.1 0.12
Nicholson and Thomas [7] 0.31–0.40 10,000–50,000 7.9–16.5 0.14–0.17
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A B S T R A C T

A predominantly semiconducting single-walled carbon nanotube-based thin conductive

film was fabricated on a flexible poly(ethylene terephthalate) substrate. The structural fea-

tures of the nanotubes and careful experimental scrutinization consistently yielded the

films with very low surface resistance (59 X sq�1) and high transparency (80%). The mor-

phological studies of these films before and after acid treatment revealed the self orienta-

tion of nanotubes clustered at favorable centers.
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Advanced research performed over the last two decades has

concluded that single-walled carbon nanotubes (SWCNTs)

are one of the best substitutes for indium tin oxide in practi-

cal applications such as transparent coatings [1–5] and light

emitting diodes (LEDs) [6]. In this letter, we report the prepa-

ration and characterization of thin conductive films (TCFs)

with very low sheet resistance and high optical transparency,

which originate from predominantly semiconducting

SWCNTs produced by chemical vapor deposition (CVD). The

SWCNTs used in this work exhibit high purity, high levels of

structural perfection and narrow diameter distribution.

The experimental and fabrication methods were reported

elsewhere [4]. The strong adhesion of the nanotube coating

over the poly(ethylene terephthalate) (PET) was confirmed

by a Scotch tape test [7]. A visible-near infrared (VIS-NIR)

spectrum (JASCO V 570) of the SWCNTs/sodium dodecyl sul-

fate (SDS) dispersion is shown in Fig. 1. The diameter of the

nanotubes derived from optical spectra for our bulk nanotube

sample as a function of transition in the first semiconducting

wavelength region (S11) lies in between 1.04 and 1.14 nm for a

particular optical transition occurring at 1365 nm, which is
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Fig. 2 – Raman spectrum of the SWCNTs, radial breathing

frequency (inset).

Fig. 3 – FESEM images of (a) high purity SWCNTs grown by

CVD, (b) TCF on the PET substrate (without acid treatment)

and (c) acid treated TCF on the PET substrate.
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Fig. 1 – VIS-NIR spectrum of SWCNTs/SDS dispersion.
applicable to nanotube chirality of (n �m)/3 = 1. This calcula-

tion is based on the model proposed by Bachilo et al. [8] as

k = hcdt/2ac–cc0 for tubes that show an optical transition in

the S11 region. Here, h is Plank’s constant, c is the speed of

light, dt is the nanotube diameter, ac–c is the carbon–carbon

bond distance, and c0 is the interaction energy between

neighboring carbon atoms.

The line shape of the non-dispersive graphitic (G) band of

the Raman spectrum (Hololab series 5000; excitation wave-

length of 785 nm) indicates the semiconducting nature of

the nanotubes (Fig. 2). The high purity of SWCNTs was
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confirmed by a very low ID/IG ratio (0.08). The frequencies of

the radial breathing mode (xRBM) (see inset of Fig. 2) are

related to the diameter of the SWCNTs as xRBM (cm�1) =

A/d (nm) + B, where A (223 cm�1) and B (10 cm�1) are

constants [9]. The diameter of the SWCNT used here was

calculated to be between 0.98 and 1.10 nm based on the above

equation.

Fig. 3 shows field emission scanning electron microscopy

(FESEM-JEOL JSM-6701) images of high purity SWCNTs and

TCFs before and after acid treatment. Long carbon nanotubes

with spaghetti-like morphologies are observed in Fig. 3a. The

long nanotubes with interconnecting networks seemed to be

preserved on the PET substrate (Fig. 3b) after spray coating.

The acid treated TCF shown in Fig. 3c exhibits an extremely

different morphology. A large number of nanotubes are clus-

tered together (size �0.3 lm; violet double headed arrows)

and are separated by distinct channels (blue lines). It is be-

lieved that the SWCNTs on PET tend to be denser when trea-

ted with nitric acid. However, nanotube densification is

difficult to achieve in a TCF as the nanotubes are not in a

loose configuration, even though the tendency of tubes to at-

tain dense morphology continues and clusters finally form at

favorable centers. This self-orientation of nanotubes creates

several well defined channels near the gross-bundles. The

long nanotubes/bundles passing via different gross-bundles

may also ensure electrical balance between various points

all over the substrate.

An optimized TCF offered a sheet resistance of 1050 X sq�1

in its pristine state with a transmittance of 95%. Nitric acid

treatment lowers the sheet resistance of the TCF to 428 X sq�1

without altering the transmittance. By spraying more of the

SWCNT dispersion on the PET substrate, we achieved a very

low sheet resistance of 59 X sq�1 with an optical transmit-

tance of 80% in the acid treated TCF. There are many TCF

applications requiring very low sheet resistance and high

transparency including electromagnetic induction (EMI)

shielding (<80 X sq�1, 80% T), photovoltaics, LEDs, flat panel

displays (FPDs) (<110 X sq�1, 80% T), and touch screens (TS)

(<500 X sq�1, 85% T) [10–12]. For convenience, the electrical

and optical requirements for various applications and previ-

ously reported values are shown in Fig. 4. It can be seen from
the data given in Fig. 4 that the performance of the optimized

TCF fabricated by our method is superior to all other TCFs re-

ported in the literature.

In conclusion, the TCF that we fabricated from predomi-

nantly semiconducting SWCNTs exhibited very low surface

resistance and high optical transparency (59 X sq�1, 80% T).

These TCFs may be useful in a range of applications such as

solar cells, LEDs, EMI shielding, TS, FPD and are expected to

be scalable for industrial use.
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A B S T R A C T

This paper reports an innovative approach to enhance electrical conductivity of fiber com-

posites based on non-conductive fiber and polymer matrix. The dispersion of carbon nano-

tubes (CNTs) is carried out using a fiber sizing agent which contains uniformly distributed

CNTs. The infusion of the sizing agent into the fiber preform prior to resin infusion gives

rise to high agglomeration of CNTs on the fiber surface and results in electrical conductiv-

ities of 2–3 orders of magnitude higher than those of specimens prepared by a calendering

approach.

� 2010 Elsevier Ltd. All rights reserved.

Adding a small amount of CNTs can improve the electrical

conductivity of fiber-reinforced polymeric composites [1]. It

has been shown that CNTs can penetrate into matrix-rich re-

gions among fibers to form an electrically conductive network

[2], which has various potential technical applications such as

sensing damages in composites [3,4] and in electromagnetic

shielding materials [5,6]. One of the major challenges in these

applications is the dispersion of CNTs in polymer matrix.

Sonication [7], stirring, three-roll mill [8] and other methods

have been employed for dispersing CNTs in polymer nano-

composites. However, resin infusion process based on these

types of CNT–polymer mixtures are limited by the high vis-

cosity of the CNT–polymer mixtures, which prohibits scaling

up of the process to large and thick composites.

In this study, a fiber sizing agent (SIZICYLTM XC R2G, Nano-

CYL) was used to improve the electrical conductivity in fiber

composite materials. This sizing polymer solution possesses

relatively low viscosity and contains well dispersed CNTs.

Three groups of specimens were fabricated, namely, three-roll

milled CNTs (CVD MWCNTs, Iljin Nanotech)/glass fiber/epoxy

(Epon 862, Hexion Specialty Chemicals) composites, glass fi-

ber/sizing agent/epoxy composites and carbon fiber/epoxy

composites. For three-roll milled CNTs/glass fiber/epoxy com-

posites, calendering technique was used to disperse 0.5 wt.%

CNTs in the epoxy resin. After adding curing agent (Epi-cure,

Hexion Specialty Chemicals) to the mixture, the resin was in-

fused into the [0]8 glass fiber preform using conventional

vacuum-assisted resin transfer molding (VARTM) at 60 �C

0008-6223/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.carbon.2010.03.027

* Corresponding author: Fax: +1 302 831 3619.
E-mail addresses: chou@udel.edu, chou@me.udel.edu (T.-W. Chou).


	Highly conductive and transparent thin films fabricatedwith predominantly semiconducting single-walledcarbon nanotubes
	Acknowledgements
	R E F E R E N C E S


